MITIGATION PLAN WITH AS-BUILT DRAWINGS

JARMANS OAK RESTORATION SITE ONSLOW COUNTY, NORTH CAROLINA
(CONTRACT \#D06069-A)
FULL DELIVERY PROJECT
WHITE OAK RIVER BASIN
CATALOGING UNIT 03030001

Prepared for:
NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES RALEIGH, NORTH CAROLINA

Prepared by:

Natural Resources
Restoration \& Conservation

Restoration Systems, LLC
1101 Haynes Street, Suite 211
Raleigh, North Carolina 27604

Axiom Environmental, Inc.
2126 Rowland Pond Drive
Willow Springs, North Carolina 27592

JARMANS OAK STREAM AND WETLAND RESTORATION SITE AS-BUILT MITIGATION PLAN ONSLOW COUNTY

EXECUTIVE SUMMARY

Restoration Systems, L.L.C. (Restoration Systems) has completed restoration of stream and riverine wetlands at the Jarmans Oak Stream and Wetland Restoration Site (hereafter referred to as the "Site") to assist the North Carolina Ecosystem Enhancement Program (EEP) in fulfilling stream and wetland mitigation goals in the region. The Site, located approximately two miles east of the Onslow/Duplin County line and approximately three miles west of the Town of Richlands in Onslow County, provides 6701 stream mitigation units (SMU's) and 13 riverine wetland mitigation units (WMU's). The Site is located in United States Geological Survey (USGS) Cataloging Unit (CU) 03030001 and Targeted Local Watershed 0303001010010 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-05-02) of the White Oak River Basin. This subbasin of the White Oak River Basin is entirely contained within Onslow County and consists of the New River and its tributaries, several small Coastal Plain streams, and the Intracoastal Waterway.

A Detailed Stream and Wetland Restoration Plan was completed for the Site in December 2006. The plan outlined methods to complete stream and wetland restoration activities at the Site. An approximately 35acre conservation easement was placed on the Site to incorporate all restoration activities. The Site contains 24 acres of hydric soil, three unnamed tributaries (UTs) to the New River, and adjacent floodplains. An undisturbed reach of Bullard Branch, approximately 15 miles northwest of the Site in Duplin County, was utilized as the reference reach. Prior to implementation, the Site was characterized by agricultural land utilized primarily for row crop production. Riparian vegetation adjacent to Site streams was sparse and disturbed due to plowing and regular maintenance, and row crop areas were subject to the broadcast application of various agricultural chemicals.

The primary goals of this stream and wetland restoration project focused on improving water quality, enhancing flood attenuation, and restoring aquatic and riparian habitat and were accomplished by:

- Removing nonpoint sources of pollution associated with agricultural production a) cessation of broadcasting fertilizer, pesticides, and other agricultural materials into and adjacent to Site streams and wetlands and b) providing a vegetative buffer adjacent to streams and wetlands to treat surface runoff.
- Reducing sedimentation within onsite and downstream receiving waters through a) a reduction of bank erosion, vegetation maintenance, and agricultural plowing to Site streams and b) providing a forested vegetative buffer adjacent to Site streams and wetlands.
- Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile.
- Promoting floodwater attenuation through a) reconnecting bankfull stream flows to the abandoned floodplain terrace; b) restoring secondary, entrenched tributaries thereby reducing floodwater velocities within smaller catchment basins; c) restoring depressional floodplain wetlands and increasing storage capacity for floodwaters within the Site; and d) revegetating Site floodplains to increase frictional resistance on floodwaters crossing Site floodplains.
- Improving aquatic habitat by enhancing stream bed variability.
- Providing wildlife habitat including a forested riparian corridor within a region of the state highly dissected by agricultural land use.

As constructed, the Site restored historic stream and wetland functions, which existed onsite prior to channel straightening and dredging, agricultural impacts, and vegetation removal. Stream construction of meandering, E-type stream channel and braided, D-type channel resulted in 6219 linear feet of stream restoration, 1205 linear feet of stream enhancement (level II), 11 acres of riverine wetland restoration, and 6.1 acres of riverine wetland enhancement.

TABLE OF CONTENTS

EXECUTIVE SUMMARY i
1.0 INTRODUCTION 1
2.0 PROJECT BACKGROUND 2
2.2 Project History 3
3.0 RESTORATION ACTIVITIES 4
3.1 Stream Restoration 4
3.1.1 Belt-width Preparation and Grading 4
3.1.2 Floodplain Bench Excavation 4
3.1.3 Channel Excavation 4
3.1.4 Channel Plugs 5
3.1.5 Channel Backfilling 5
3.1.6 In-Stream Structures 5
3.1.7 Forded Channel Crossing 6
3.2 Wetland Restoration 6
3.2.1 Reestablishment of Historic Groundwater Elevations 6
3.2.2 Excavation and Grading of Elevated Spoil and Sediment Embankments 6
3.2.3 Hydrophytic Vegetation 6
3.2.4 Reconstruction of Stream Corridors 6
4.0 PLANT COMMUNITY RESTORATION 7
5.0 MONITORING PLAN 7
5.1 Stream 8
5.2 Hydrology 8
5.3 Vegetation 8
6.0 SUCCESS CRITERIA 9
6.1 Stream Success Criteria 9
6.2 Hydrologic Success Criteria 9
6.2 Vegetation Success Criteria 9
7.0 MONITORING REPORT SUBMITTAL 10
8.0 CONTINGENCY 10
9.0 REFERENCES 12

TABLES

Table 1. Planted Tree Species 7
Table 2. Characteristic Tree Species. 10

APPENDICES

Appendix A. Figures and Sheets
Appendix B. Preconstruction and Construction Photographs
Appendix C. As-built Stream Measurements

FIGURES

Figure 1. Site Location Appendix A
Figure 2. USGS Hydrologic Unit Map Appendix A
Figure 3. Preconstruction Conditions Appendix A
Figure 4. Postconstruction Wetlands Appendix A
Sheet T-1. Title/Index of Sheets Appendix A
Sheet P-1. Conservation Area Appendix A
Sheet P-2. Site Construction Appendix A
Sheet P-3. Vegetation Planting Appendix A
Sheet P-4. Monitoring Plan Appendix A
Sheet L-1. Line Data Upstream Appendix A
Sheet L-2. Line Data Downstream Appendix A
Sheet L-3. Line Curve Data Appendix A
Sheet L-4. Line Profile Data Appendix A
Sheet D-1. Details Appendix A

JARMANS OAK STREAM AND WETLAND RESTORATION SITE AS-BUILT MITIGATION PLAN ONSLOW COUNTY

1.0 INTRODUCTION

Restoration Systems, L.L.C. (Restoration Systems) has completed restoration of stream and riverine wetlands at the Jarmans Oak Stream and Wetland Restoration Site (hereafter referred to as the "Site") to assist the North Carolina Ecosystem Enhancement Program (EEP) in fulfilling stream and wetland mitigation goals in the region. The Site, located approximately two miles east of the Onslow/Duplin County line and approximately three miles west of the Town of Richlands in Onslow County, provides 6701 stream mitigation units (SMU's) and 13 riverine wetland mitigation units (WMU's) (Figure 1, Appendix A). The Site is located in United States Geological Survey (USGS) Cataloging Unit (CU) 03010001 and Targeted Local Watershed 03030001010010 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-05-02) of the White Oak River Basin (Figure 2, Appendix A). This subbasin of the White Oak River Basin is entirely contained within Onslow County and consists of the New River and its tributaries, several small Coastal Plain streams, and the Intracoastal Waterway.

A Detailed Stream and Wetland Restoration Plan was completed for the Site in December 2006. The plan outlined methods to complete stream and wetland restoration activities at the Site. An approximately 35acre conservation easement was placed on the Site to incorporate all restoration activities. The Site contains 24 acres of hydric soil, three unnamed tributaries (UTs) to the New River, and adjacent floodplains. The three UTs to the New River and adjacent floodplain represent the primary hydrologic features of the Site. The drainage basin size is approximately 0.59 square mile at the Site outfall. The Site watershed is characterized by forest, agricultural land, and sparse industrial/residential development; less than ten percent of the upstream watershed is composed of impervious surface. Residential development becomes more concentrated southeast of the watershed in the Town of Richlands. An undisturbed reach of Bullard Branch, approximately 15 miles northwest of the Site in Duplin County, was utilized as the reference reach.

Prior to implementation the Site was characterized by agricultural land utilized primarily for row crop production (Figure 3, Appendix A). Riparian vegetation adjacent to Site streams was sparse and disturbed due to plowing and regular maintenance, and row crop areas were subject to the broadcast application of various agricultural chemicals. In addition, stream channels had been straightened and dredged. These factors resulted in degraded water quality, unstable channel characteristics (stream entrenchment, erosion, and bank collapse), and decreased wetland function.

The following objectives were proposed to provide mitigation credit requested under the EEP Request For Proposal (RFP) \#16-D06069 dated December 19, 2005.

- Restore 6219 linear feet of stream within three UTs to the New River.
- Enhance 1205 linear feet of stream within three UTs to the New River
- Restore 11 acres of jurisdictional riverine wetland.
- Enhance an additional 6.1 acres of jurisdictional riverine wetland.
- Reforest the entire floodplain within the easement area with native forest species.

The primary goals of this stream and wetland restoration project focus on improving water quality, enhancing flood attenuation, and restoring aquatic and riparian habitat and will be accomplished by:

- Removing nonpoint and point sources of pollution associated with agriculture including a) cessation of broadcasting fertilizer, pesticides, and other agricultural chemicals into and adjacent to Site streams and b) restoration of a forested riparian buffer adjacent to streams to treat surface runoff.
- Reducing sedimentation within onsite and downstream receiving waters by a) reducing bank erosion associated with vegetation maintenance and agricultural plowing to Site streams and b) planting a forested riparian buffer adjacent to Site streams.
- Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile supported by natural in-stream habitat and grade/bank stabilization structures.
- Promoting floodwater attenuation by a) reconnecting bankfull stream flows to the abandoned floodplain terrace; b) restoring secondary, dredged, straightened, and entrenched tributaries, thereby reducing floodwater velocities within smaller catchment basins; c) increasing storage capacity for floodwaters within the Site; and d) revegetating Site floodplains to increase frictional resistance on floodwaters.
- Restoring onsite wetlands, thereby promoting flood storage, nutrient cycling, and aquatic wildlife habitat.
- Improving aquatic habitat with bed variability and the use of in-stream structures.
- Providing a terrestrial wildlife corridor and refuge in an area developed for agricultural production.

Construction of the Site resulted in restoration of historic stream and wetland functions which, prior to construction, no longer existed because of channel straightening and dredging, agricultural impacts, and vegetation removal. Stream construction of meandering, E-type stream channel and braided, D-type channel resulted in approximately 6219 linear feet of stream restoration, 1205 linear feet of stream enhancement (level II), 11 acres of riverine wetland restoration, and 6.1 acres of riverine wetland enhancement. Restoration Systems was contracted to supply 6640 stream mitigation units and 12 riverine wetland mitigation units.

2.0 PROJECT BACKGROUND

$2.1 \quad$ Preconstruction Conditions

Prior to construction, the entire Site was utilized for row crop production (Figure 3, Appendix A). In order to maximize useable field acreage streams were channelized and riparian vegetation was removed. Site streams were subject to contamination from the broadcast application of agricultural chemicals. The agricultural practices of the Site were contributory factors to degraded water quality, unstable channel characteristics (stream entrenchment, erosion, and bank collapse), and decreased wetland function.

Streams

The Site encompasses three UTs to the New River (main tributary, southern tributary [west] and southern tributary [east]) as well as the adjacent floodplain and hydric soils. The tributaries converge onsite and drain an approximately 0.59 -square mile watershed at the Site outfall. The main tributary is a first- and second-order stream; the southern tributaries are first-order streams. Onsite streams are bank-to-bank systems that were previously impacted by ditching, vegetative clearing, and erosive flows and were characterized by excessive incision.

Hydric Soils

Detailed soil mapping of the Site indicates that hydric soils of the Muckalee series encompass 24 acres (68 percent of the Site) adjacent to Site stream channels targeted for restoration and extend into the immediate floodplain. Soils of the Muckalee series are characterized by light gray to dark gray or gley colored matrix with mottles consisting of sandy loam textured surface soils underlain by sandy loam or sandy clay textured soils. In general, areas of hydric soils of the Muckalee series were disturbed by stream alterations including dredging, straightening, rerouting, and downcutting of streams; floodplain ditching; deforestation; and soil compaction due to annual plowing. Based on preliminary studies, onsite soils of the Muckalee series appear to have historically supported jurisdictional riverine wetlands that were intermittently flooded by over-bank stream flows, upland runoff, groundwater migration into the Site, and, to a lesser extent, direct precipitation.

Plant Communities

Distribution and composition of plant communities reflected landscape-level variations in topography, soils, hydrology, and past or present land use practices. The Site was characterized entirely by agricultural land that was regularly maintained and plowed for row crops, leaving soils disturbed and exposed to the edges of Site stream banks. Riparian vegetation adjacent to Site streams was predominantly characterized by an herbaceous assemblage of planted grasses and invasive annuals.

Drainage Area

This hydrophysiographic region is considered characteristic of the Coastal Plain Physiographic Province and is located within the Carolina Flatwoods ecoregion of North Carolina. The region is characterized by Carolina bays, swamps, and low-gradient streams with silty or sandy substrate (Griffith 2002). This hydrophysiographic region is characterized by moderate rainfall with precipitation averaging approximately 56 inches per year (USDA 1992). The Site occurs within USGS 14-digit CU 03030001010010 (NCDWQ Subbasin 03-05-02) of the White Oak River Basin (Figure 2, Appendix A) (USGS 1974).

The Site drainage area encompasses approximately 0.59 square mile of land at the downstream Site outfall. The drainage area is characterized by forest, agricultural land, and sparse industrial/residential development. Site streams ultimately drain to a section of the New River which has been assigned Stream Index Number 19-(1), a Best Usage Classification of C NSW, and is partially supporting its intended uses (NCDWQ 2001, NCDWQ 2005).

2.2 Project History

On July 10, 2006, the EEP entered into a contract with Restoration Systems to restore the Site. A Detailed Stream and Wetland Restoration Plan was completed for the project in December 2006. Upon completion of the detailed plan, construction schematics were developed and construction was initiated in June 2007. Backwater Environmental completed earthwork and grading at the Site on September 20, 2007. Carolina Silvics completed planting of the Site on January 9, 2007.

Information on project managers, owners, and contractors follows:

Owner Information

Restoration Systems, LLC
George Howard and John Preyer
1101 Haynes Street, Suite 211
Raleigh, North Carolina 27604
(919) 755-9490

Designer Information
Axiom Environmental, Inc.
W. Grant Lewis

2126 Rowland Pond Drive
Willow Spring, North Carolina 27592
(919) 215-1693

Planting Contractor Information
Carolina Silvics
Dwight McKinney
908 Indian Trail Road
Edenton, North Carolina 27932
(919) 523-4375

Earthwork Contractor Information
Backwater Environmental
Wes Newell
PO Box 1654
Pittsboro, North Carolina 27312
(919) 523-4375

3.0 RESTORATION ACTIVITIES

Primary activities at the Site included 1) stream restoration/enhancement, 2) wetland restoration/enhancement, 3) soil scarification, and 4) plant community restoration (Sheets P1-P4, Appendix A). Restoration plans constructed 6219 linear feet of stream, enhanced (level II) 1205 linear feet of stream, restored 11 acres of riverine wetland, and enhanced 6.1 acres of riverine wetland. As constructed, the Site provides 6701 SMUs and 13 riverine WMUs.

3.1 Stream Restoration

The entire Site is located within a floodplain suitable for channel relocation. The stream was constructed on new location and the old, dredged and straightened channel was abandoned and backfilled. Primary activities designed to restore the channel on new location included 1) belt-width preparation and grading, 2) floodplain bench excavation, 3) channel excavation, 4) installation of channel plugs, 5) backfilling of the abandoned channel, 6) ditch rerouting, 7) installation of in-stream structures and a drop structure at the Site outfall, and 8) construction of a forded channel crossing.

3.1.1 Belt-width Preparation and Grading

The belt-width was prepared and graded; material excavated during grading was stockpiled immediately adjacent to channel segments to be abandoned and backfilled. These segments were backfilled after stream diversion was completed. After preparation of the corridor, the design channel and updated profile survey was developed and the location of each meander wavelength plotted and staked along the profile.

3.1.2 Floodplain Bench Excavation

A bankfull, floodplain bench was created to 1) remove eroding material and collapsing banks, 2) promote overbank flooding during bankfull flood events, 3) reduce the erosive potential of flood waters, and 4) increase the width of the active floodplain. Bankfull benches were created by excavating the adjacent floodplain to bankfull elevations or filling eroded/abandoned channel areas with suitable material. After excavation, or filling of the bench, a relatively level floodplain surface was stabilized with suitable erosion control measures. Planting of the bench with native floodplain vegetation is expected to reduce erosion of bench sediments, reduce flow velocities in flood waters, filter pollutants, and provide wildlife habitat.

3.1.3 Channel Excavation

The channel was constructed within the range of values depicted in Sheet D-1 (Appendix A), which provides geometry and elevation data for the constructed channel.

The stream banks and local belt-width area of constructed channels were planted with shrub and herbaceous vegetation. Deposition of shrub and woody debris into and/or overhanging the constructed channel was encouraged.

Particular attention was directed toward providing vegetative cover and root growth along the outer bends of each stream meander. Live willow stake revetments, available root mats, and/or biodegradable, erosioncontrol matting were embedded into the break-in-slope to promote more rapid development of an overhanging bank.

3.1.4 Channel Plugs

Impermeable plugs were installed along abandoned channel segments. The plugs consist of lowpermeability materials designed to be of sufficient strength to withstand the erosive energy of surface flow events across the Site. Dense clays imported from off-site and existing material, compacted within the channel, were used for plug construction. The plugs were of sufficient width and depth to form an imbedded overlap in the existing banks and channel bed.

3.1.5 Channel Backfilling

After impermeable plugs were installed, the abandoned channels were backfilled. Backfilling was performed primarily by pushing stockpiled materials into the channel. The channels were filled to the extent that onsite material was available and compacted to maximize microtopographic variability, including ruts, ephemeral pools, and hummocks in the vicinity of the backfilled channel.

Borrow material was generated through excavation of groundwater storage depressions throughout the Site landscape. The primary purpose of these depressions was to provide suitable, low permeability material for ditch plugs and backfilling, to increase water storage potential within the wetland restoration area, and to increase potential for biological diversity within the complex.

3.1.6 In-Stream Structures

In-stream structures were used within the Site for bank stabilization, grade control, and habitat improvement. This included the installation of two log vanes and a TerraCell drop structure at the bottom of the Site.

Log Vanes

Log vanes were used to direct high velocity flows during bankfull events towards the center of the channel. Log vanes were constructed utilizing large tree trunks harvested from the Site. The tree stem harvested for a log cross-vane arm were long enough to be imbedded into the stream channel and extend several feet into the floodplain. Logs create an arm that slopes from the center of the channel upward at approximately 5 to 7 degrees, tying in at the bankfull floodplain elevation. Logs extend from each stream bank at an angle of 20 to 30 degrees. A trench was dug into the stream channel that was deep enough for the head of the log to be at or below the channel invert. The trench was then extended into the floodplain and the log was set into the trench such that the log arm was below the floodplain elevation. Once the vane was in place, filter fabric was toed into a trench on the upstream side of the vane and draped over the structure to force water over the vane. The upstream side of the structure was then backfilled with suitable material.

TerraCell Outfall Structure

A TerraCell drop structure was installed at the Site outfall to lower Site hydrology to its preconstruction elevation. The drop structure was installed approximately 150 feet from the downstream Site outfall. The structure was constructed to resist erosive forces associated with hydraulic drops proposed at the Site. TerraCell is a light weight, flexible mat made of high density polyethylene strips. The strips are bonded together to form a honeycomb configuration. The honeycomb mat was fixed in place and filled with gravel or sand. Material in the TerraCell structure was be planted with grasses and shrubs for additional erosion protection. The TerraCell structure forms a nickpoint that approximates geologic controls in stream beds.

3.1.7 Forded Channel Crossing

Landowner constraints necessitated the installation of one channel ford to allow access to portions of the property isolated by the conservation easement and stream restoration activities. The location of the channel ford is depicted on Sheet P-1 (Appendix A). The ford was constructed of hydraulically stable riprap or suitable rock and is large enough to handle the weight of anticipated vehicular traffic. Approach grades to the ford are at an approximate $15: 1$ slope and constructed of hard, scour-resistant crushed rock or other permeable material, which is free of fine materials. The bed elevation of the ford is equal to the floodplain elevation above and below the ford to reduce the risk of headcutting.

3.2 Wetland Restoration

Wetland restoration activities focused on 1) the reestablishment of historic water table elevations, 2) excavation and grading of elevated spoil and sediment embankments, 3) reestablishment of hydrophytic vegetation, and 4) reconstruction of stream corridors.

3.2.1 Reestablishment of Historic Groundwater Elevations

Preconstruction channel depths averaged 5 feet, while the depth for the constructed restoration channels average approximately 1 foot. Hydric soils adjacent to the incised channels were drained due to lowering of the groundwater tables and a lateral drainage effect from preconstruction stream reaches. Reestablishment of channel inverts is expected to rehydrate hydric Muckalee soils adjacent to Site streams, resulting in the restoration of jurisdictional hydrology to riverine wetlands within the Site.

3.2.2 Excavation and Grading of Elevated Spoil and Sediment Embankments

Spoil/sediment deposition adjacent to the preconstruction channel and area ditches were removed. Spoil materials were used to fill onsite ditches, which represented a critical element of onsite wetland restoration.

3.2.3 Hydrophytic Vegetation

Onsite wetland areas endured significant disturbance from land use activities prior to construction such as land clearing and other anthropogenic maintenance. Wetland areas were revegetated with native vegetation typical of wetland communities in the region. Emphasis focused on developing a diverse plant assemblage. Plant Community Restoration is discussed in more detail in Section 4.0.

3.2.4 Reconstruction of Stream Corridors

The stream restoration plan involved the reconstruction of three UTs to the New River by diverting stream flow through its historic floodplain. Existing channels were backfilled to restore the water table to historic conditions. However, some portions of the existing channels remain open for the creation of wetland "oxbow lake-like" features. These features were plugged on each side of the open channel and will function as open water systems. They are expected to provide habitat for a variety of wildlife as well as create open water/freshwater marsh within the Site.

4.0 PLANT COMMUNITY RESTORATION

On January 7-9, 2008, the Site was planted with native, wetland-adapted tree and shrub species (Sheet P-3, Appendix A). Onsite observations, reference forest, and pertinent community descriptions from Classification of the Natural Communities of North Carolina (Schafale and Weakley 1990) were used to develop the primary plant community association promoted during restoration efforts. Approximately 32.5 acres of the Site was planted with species characteristic of the Coastal Plain Small Stream Swamp.

Before plant community restoration was implemented, the entire Site was scarified. Scarification was performed as linear bands directed perpendicular to the land slope. Subsequently, community restoration was initiated on scarified surfaces.

Ten tree species were planted at the Site; they are as follows (with planted quantity).

Table 1. Planted Tree Species

Vegetation Association (Planting Area)	Coastal Plain Small Stream Swamp	
Area (acres)	$\mathbf{3 2 . 5}$	
SPECIES	Total Number Planted	Percentage of Total
River birch (Betula nigra)	3300	10.8
Sugarberry (Celtis laevigata)	3300	10.8
Buttonbush (Cephalanthus occidentalis)	3300	10.8
Green ash (Fraxinus pennsylvanica)	3300	10.8
Swamp black gum (Nyssa biflora)	3300	10.8
Sycamore (Platanus occidentalis)	3300	10.8
Cherrybark oak (Quercus pagodaefolia)	3300	10.8
Water oak (Quercus nigra)	3300	10.8
Willow oak (Quercus phellos)	3300	10.8
Elderberry (Sambucus canadensis)	800	2.6
TOTAL	$\mathbf{3 0 , 5 0 0}$	$\mathbf{1 0 0}$

Bare-root seedlings of shrubs and canopy and understory tree species were planted within the Site at a density of 938 stems per acre (9 -foot centers). Planting was performed during winter to allow plants to stabilize during the dormant period and develop root systems during the spring season. Bare-root seedlings were hand planted to minimize wetland soil disturbance. A total of 30,500 character tree and shrub seedlings were planted in support of Site wetland restoration.

5.0 MONITORING PLAN

The Jarmans Oak Stream and Wetland Restoration Site monitoring plan will entail analysis of the stream channel, hydrology, and vegetation. Monitoring of restoration efforts will be performed for a minimum of 5 years or until success criteria are fulfilled. The detailed monitoring plan is depicted in Sheet P-4 (Appendix A).

5.1 Stream

Five stream reaches will be monitored for geometric activity; four reaches on the main tributary and one reach on the southern tributary (west). Each stream reach extends for approximately 600 linear feet for a total monitoring length of 3,000 linear feet along the restored channel. After completion of Site construction 20 stream cross-sections were established; two riffle cross-sections and two pool crosssections were established on each stream monitoring reach:

Annual fall monitoring will include development of channel cross-sections on riffles and pools, and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) water surface slope, and 9) facet slope. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year. A photographic record that will include preconstruction and postconstruction pictures has been initiated (Appendix B).

Baseline/as-built measurements were preformed in October and November 2007. As-built channels emulated the proposed channel morphology; cross-section and longitudinal profile plots can be found in Appendix C.

5.2 Hydrology

After hydrological modifications were completed at the Site, continuously recording, surficial monitoring gauges were installed in accordance with specifications in Installing Monitoring Wells/Piezometers in Wetlands (NCWRP 1993). Monitoring gauges were set to a depth of approximately 24 inches below the soil surface. Screened portions of each gauge were surrounded by filter fabric, buried in screened well sand, and sealed with a bentonite cap to prevent siltation and surface flow infiltration during floods.

Four monitoring gauges were installed in wetland restoration areas to provide representative coverage of the Site (Sheet P-4, Appendix A). One additional gauge was placed in a reference wetland area just north of the Site for comparison with onsite conditions. Hydrological sampling will be performed in restoration and reference areas during the growing season (April 8 through November 5) at daily intervals necessary to satisfy the hydrology success criteria within each physiographic landscape area (USDA 1992).

5.3 Vegetation

Following Site planting, fourteen (13-10-meter by $10-$ meter and one -20 -meter by 5 -meter) vegetation monitoring plots were established within the Site (Sheet P-4, Appendix A). During the first year, vegetation will receive a cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by nuisance species. Subsequently, quantitative sampling of vegetation will be performed each year using the CVS-EEP Protocol for Recording Vegetation Level 1-2 Plot Sampling Only (Version 4.0) (Lee et al. 2006 between June 1and September 30 until the vegetation success criteria are achieved.

A photographic record of plant growth will be included in each annual monitoring report.

6.0 SUCCESS CRITERIA

6.1 Stream Success Criteria

Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system.

The channel configuration will be measured on an annual basis in order to track changes in channel geometry, profile, or substrate. These data will be utilized to determine the success in restoring stream channel stability. Specifically, the width-to-depth ratio should characterize an E-type and/or a borderline E-type/C-type channel, bank-height ratios indicative of a stable or moderately unstable channel, and minimal changes in cross-sectional area, channel width, and/or bank erosion along the monitoring reach. In addition, channel abandonment and/or shoot cutoffs must not occur and sinuosity values must remain at approximately 1.3 (thalweg distance/straight-line distance). The field indicator of bankfull events will be described in each monitoring year and indicated on a representative channel cross-section figure. If the stream channel is down-cutting or the channel width is enlarging due to bank erosion, additional bank or slope stabilization methods will be employed.

Some areas within the design channel may be expected to form low-slope, braided, stream/swamp complexes similar to Muckalee swamps in the area. These stream/swamp complexes would not be considered unstable; however, footage of stream channel restoration in these reaches will be recalculated from distance along the thalweg (1.3 sinuosity) to distance along the valley (1.0 to 1.1 sinuosity).

Stream substrate is not expected to coarsen over time; therefore, pebble counts are not proposed as part of the stream success criteria.

6.2 Hydrologic Success Criteria

Target hydrological characteristics include saturation or inundation for 8 to 12 percent within Muckalee soils (riverine wetlands) of the growing season, during average climatic conditions. This value is based on DRAINMOD simulations for 42 years of rainfall data in an old field stage. These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed in these areas.

Hydrological contingency will require consultation with hydrologists and regulatory agencies if wetland hydrology enhancement is not achieved. Floodplain surface modifications, including construction of ephemeral pools, represent a likely mechanism to increase the floodplain area in support of jurisdictional wetlands. Recommendations for contingency to establish wetland hydrology will be implemented and monitored until Hydrology Success Criteria are achieved.

6.2 Vegetation Success Criteria

Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria are dependent upon the density and growth of characteristic forest species. Additional success criteria are dependent upon density and growth of "Characteristic Tree Species." Characteristic Tree Species include planted species, species identified through inventory of a reference (relatively undisturbed) forest community used to orient the planting plan, and appropriate Schafale and Weakley (1990) community descriptions (Coastal Plain Small Stream

Swamp). All canopy tree species planted and identified in the reference forest will be utilized to define "Characteristic Tree Species" as termed in the success criteria.

Table 2. Characteristic Tree Species

PLANTED SPECIES	REFERENCE SPECIES
River birch (Betula nigra)	Red maple (Acer rubrum)
Sugarberry (Celtis laevigata)	Ironwood (Carpinus carolinia)
Buttonbush (Cephalanthus occidentalis)	Pignut hickory (Carya glabra)
Green ash (Fraxinus pennsylvanica)	Dogwood (Cornus sp.)
Swamp black gum (Nyssa biflora)	Ash (Fraxinus sp.)
Sycamore (Platanus occidentalis)	American holly (Ilex opaca)
Cherrybark oak (Quercus pagodaefolia)	Sweetgum (Liquidambar styraciflua)
Water oak (Quercus nigra)	Yellow poplar (Liriodendron tulipifera)
Willow oak (Quercus phellos)	White oak (Quercus alba)
Elderberry (Sambucus canadensis)	Water oak (Quercus nigra)
	Laurel oak (Quercus laurifolia)
	Swamp chestnut oak (Quercus michauxii)
	Cherrybark oak (Quercus pagoda)

An average density of 320 stems per acre of Characteristic Tree Species must be surviving at the end of the third monitor year. Subsequently, 290 Characteristic Tree Species per acre must be surviving at the end of year 4 and 260 Characteristic Tree Species per acre at the end of year 5.

If vegetation success criteria are not achieved, based on average density calculations from combined plots over the entire restoration area, supplemental planting may be performed with tree species approved by regulatory agencies. Supplemental planting will be performed as needed until achievement of vegetation success criteria.

7.0 MONITORING REPORT SUBMITTAL

An Annual Stream and Wetland Monitoring Report will be prepared at the end of each monitoring year (growing season). The monitoring report will depict the sample plot and quadrant locations and include photographs which illustrate Site conditions. Data compilation and analyses will be presented including graphic and tabular format, where practicable.

8.0 CONTINGENCY

In the event that success criteria are not fulfilled, a mechanism for contingency will be implemented.

Stream

In the event that stream success criteria are not fulfilled, a mechanism for contingency will be implemented. Stream contingency may include, but may not be limited to 1) structure installation; 2) repair of dimension, pattern, and/or profile variables; and 3) bank stabilization. The method of contingency is expected to be dependent upon stream variables that are not in compliance with success criteria. Primary
concerns, which may jeopardize stream success include 1) headcut migration through the Site, and/or 2) bank erosion.

Headcut Migration Through the Site

In the event that a headcut occurs within the Site (identified visually or through onsite measurements [i.e. bank-height ratios exceeding 1.4]), provisions for impeding headcut migration and repairing damage caused by the headcut will be implemented. Headcut migration may be impeded through the installation of in-stream grade control structures (rip-rap sill and/or log cross-vane weir) and/or restoring stream geometry variables until channel stability is achieved. Channel repairs to stream geometry may include channel backfill with coarse material and stabilizing the material with erosion control matting, vegetative transplants, and/or willow stakes.

Bank Erosion

In the event that severe bank erosion occurs at the Site resulting in elevated width-to-depth ratios, contingency measures to reduce bank erosion and width-to-depth ratio will be implemented. Bank erosion contingency measures may include the installation of cross-vane weirs and/or other bank stabilization measures. If the resultant bank erosion induces shoot cutoffs or channel abandonment, a channel may be excavated which will reduce shear stress to stable values.

Hydrology

Hydrological contingency will require consultation with hydrologists and regulatory agencies if wetland hydrology enhancement is not achieved. Floodplain surface modifications, including construction of ephemeral pools, represent a likely mechanism to increase the floodplain area in support of jurisdictional wetlands. Recommendations for contingency to establish wetland hydrology will be implemented and monitored until Hydrology Success Criteria are achieved.

Vegetation

If vegetation success criteria are not achieved based on average density calculations from combined plots over the entire restoration area, supplemental planting may be performed with tree species approved by regulatory agencies. Supplemental planting will be performed as needed until achievement of vegetation success criteria.

9.0 REFERENCES

Griffith, G.E. 2002. Ecoregions of North and South Carolina. Reston Virginia. U.S. Geological Society (map scale 1:1,500,000).

Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.

North Carolina Division of Water Quality (NCDWQ). 2001. White Oak River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

North Carolina Division of Water Quality (NCDWQ). 2005. North Carolina Waterbody Reports (online). Available: http:/h2o.enr.state.nc.us/bims/reports/reportsWB.html [June 24, 2005]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

North Carolina Wetlands Restoration Program (NCWRP). 1993. Installing Monitoring Wells/Piezometers in Wetlands (WRP Technical Note HY-IA-3.1). North Carolina Department of Environment, Health, and Natural Resources, Raleigh, North Carolina

Rosgen D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.
Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Ccarolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

United States Department of Agriculture (USDA). 1992. Soil Survey of Onslow County, North Carolina. United State Department of Agriculture, Soil Conservation Service.

United States Geological Survey (USGS). 1974. Hydrologic Unit Map-1974. State of North Carolina.

Appendix A.

Figures

SITE LOCATION

INDEX OF SHEETS

General
Sheet T-1:
Plan Views
Sheet P-1:
Sheet P-2:
Sheet P-3:
Sheet P-4:
Line Data
Sheet L-1:
Sheet L-2:
Sheet L-2:
Sheet L-3:
Details
Details
Sheet D-1:

Title / Index of Sheets
Conservatin Area Site Construction Vegetation Planting Monitoring Plan

Line Data Upstream Line Data Downstream Line Curve Data Line Profile Data Details

PROJECT DESCRIPTION

The Jarmans Oak Stream and Wetland Restoration Site, located less than 2 miles east of the Onslow/Duplin County line and approximately 3 miles west of the Town of Richlands, in Onslow County, provieds 6701 stream mitigation units and 13 riverine wetland mitigation units. An approximately $35-a c r e$ conservation easement has been placed on the Site to incorporate all restoration activities. The Site contains 24 acres of hydric soil, three unnamed tributaries (UTs) to the New River, and adjacent floodplains. Site streams had been degraded by dredging and straightening of the stream channels. Additional evidence of stream deterioration included bank collapse and erosion, channel incision, changes in stream power and sediment transport, and loss of characteristic riffle/pool complex morphology. Site floodplains and wetlands had been impacted by deforestation, vegetation maintenance, and groundwater draw-down from ditching and stream channel downcutting. The primary components of this restoration project include 1) establishing a conservation easement encompassing the floodplain; 2) elevating a restored system of streams and wetlands back onto the historic (abandoned) floodplain surfaces; 3) construction of a stable, riffle-pool stream channel; 4) backfilling the old entrenched ditch/stream system; 5) reforestation of 32.5 acres of agricultural fields with native forest vegetation; 6) installation of a monitoring program to track stream and wetland development on the Site. Earthwork and grading at the Site was performed over a four month period from early June to late September 2007. Site planting occurred during the week of January 7, 2008.

AS-BUILT DRAWINGS

JARMANS OAK STREAM AND WETLAND RESTORATION SITE ONSLOW COUNTY, NORTH CAROLINA

BACKWATER
ENVIRONMENTAL

NOTES/REVISIONS

Project:
Jarmans Oak Restoration Site

Onslow County North Carolina

Title:	
TITLE	
INDEX OF SHEETS	
Scale:	FIGURE NO.
NA	
Date:	
DEC 2007	
Project No.: $06-018$	

Project:
Jarmans Oak
Restoration

Onslow County
North Carolina

LINE	$\begin{aligned} & \text { URVE } \\ & \text { FA } \end{aligned}$
Scale:	FIGURE NO. L-3
NA	
Date: ${ }^{\text {DEC }} 2007$	
Project No.: 06-018	

Appendix B.
Preconstruction and Construction Photographs

Jarmans Oak Preconstruction Conditions

Jarmans Oak During Construction

Appendix C.

As-built Stream Measurements

